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A Particle Method with Adjustable Transport 
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The consistent Boltzmann algorithm (CBA) for dense, hard-sphere gases is 
generalized to obtain the van der Waals equation of state and the corresponding 
exact viscosity at all densities except at the highest temperatures. A general 
scheme for adjusting any transport coefficients to higher values is presented. 
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The direct simulation Monte Carlo (DSMC) method is a Lagrangian 
numerical scheme for solving the time-dependent, nonlinear Boltzmann 
equation for dilute gases. ~1'2'3) The method resembles molecular dynamics 
(MD) since it simulates a system of interacting particles but differs in that 
DSMC replaces the deterministic evolution by a stochastic dynamics with 
rates and probabilities obtained from kinetic theory at low densities. In its 
original formulation, DSMC was thus restricted to dilute gases, yielding 
only an ideal gas equation of state. A recent extension of the DSMC 
method, the so-called Consistent Boltzmann Algorithm (CBA), permits the 
simulation of a hard sphere (HS) gas at all densities. <4"5) The exact 
equation of state (EOS) is obtained by displacing particles an additional 
deterministic distance, namely a hard sphere diameter, to yield the correct 
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virial. The resulting transport properties are in good agreement with HS 
MD simulations, comparable to the results given by the Enskog approxi- 
mation.(6, 7) CBA has furthermore been generalized to simulate the van der 
Waals EOS by making a further displacement beyond the hard sphere 
diameter which is a function of density and temperature, as given by the 
van der Waals virial. ~s) For the van der Waals model, the fluid should 
retain the transport properties of HS; however, this is not the case using 
the displacement according to the virial. (s) This paper presents a further 
modification to the van der Waals displacement that tries to recover the 
exact MD HS shear viscosity (or other transport coefficient) while 
preserving the van der Waals EOS. 

In DSMC the positions and velocities { ~'i, b'i} of the particles (mass m) 
are evolved in time by two steps: advection and collisions. While advection 
is deterministic, in the collision step pairs of nearby particles are randomly 
selected with a HS collision probability. The post collision velocities are 
also stochastically determined, consistent with the conservation of momen- 
tum and energy. The collision is executed with the particles remaining in 
place The pressure is given by the virial theorem, at temperature T and 
number density n, as 

P = n k T + � 8 9  (1) 

where O = (d6o.. r'o) is the projection of the velocity change onto the line 
connecting centers of particles i and j averaged over collisions (indicated by 
the brackets) and F is the collision rate per unit time and volume. In 
DSMC the second term on the r.h.s, is zero because the positions of 
colliding particles are uncorrelated with the change in their velocities. 

In a van der Waals fluid the particles have a hard core exclusion and 
a weak constant attractive potential. ~6'9) For the hard core exclusion a gas 
of hard spheres with diameter a is treated as before. ~4" 5) CBA introduces a 
correlation in O by displacing the particles in the advection step by 
dHs = ad, where the unit vector a is, 

d =  ( e ; - e ) ) - ( e , - ~ A  _ _ e'~-e~ 
I(~',-~))- (~-~-)1 I~'~- ~ I' 

(2) 

where ~'r is the relative velocity of the colliding particles, and prime and 
unprimed indicate post and pre-collision values, respectively. After the 
collision, the particles are advected as, 

r",.( t + At) = f i( t) + if'i( t) At + ffrts 

~( t  + A t ) =  ~.(t) + v3(t ) At--aTns. (3) 
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The displacement aTHs leads to an average virial O =ax/zrkT/m, so that 
using the Boltzmann (dilute gas) collision rate, FB= 2tr2n 2 ~/zrkT/m, the 
consistent (corresponding to the same order in density as the transport 
coefficients) pressure is now P=nkT(1 +bzn) ,  where bz=2/3~ztr 3 is the 
HS second virial coefficient. Introducing the Enskog Y-factor, t6" ~0)which 
corrects the low density collision rate to the correct hard sphere collision 
rate at any density (/ 'us = YFB), into CBA gives the correct HS EOS at all 
densities and transport coefficients corresponding to an uncorrelated 
collision (Markov) approximation, t4) 

The attractive force in the van der Waals potential is modeled by 
adding an advection displacement, da =dad, which is a function of density 
and temperature. Specifically, one obtains the van der Waals EOS, t6'9) 

Pvdw an 
1 + bznY-k----- ~,~ (4) nk-----~ = 

when the net displacement is 

#v w = d2s + do = C a -  
aa  

b2 Y k T  
3, (5) 

where a is the attraction parameter in the van der Waals EOS. The colli- 
sion probability and rate remain those of hard spheres since the attraction 
is long-ranged and weak. Note that the principle of detailed balance 
requires that the direction of the net displacement is, on average, given by 
Eq. (2) and that a points in the direction of the apse line (line passing 
through the centers of molecules at the moment of closest approach in a 
collision). Below the critical temperature, the Maxwell tie-line EOS may be 
introduced in place of Eq. (4); see ref. 8 for details. 

The displacement introduced to model the attractive force spoils the 
good agreement with the HS transport properties. This can easily be seen 
at the Boyle point, the density at which the pressure equals that of an ideal 
gas. At the Boyle point dns = -d~ ,  so dvdw vanishes and the transport 
properties are.inappropriately those of a dilute gas (with an enhanced colli- 
sion rate due to the Y-factor) rather than those of a dense HS gas. In 
general, transport properties for van der Waals CBA are of the Enskog 
form; that is, there are three separate contributions to the total transport 
coefficient-a kinetic, a potential, and a kinetic-potential cross term. (~'~2~ 
For an advection displacement of dvdw, kinetic theory gives the three 
contributions to the shear viscosity, r/vdW, as (4~ 

4 dvaw )2 w /']vdW__ 1/Y+ (bzn) + 1.64(b2n Y, (6) 
rio 5 ~r 
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to the thermal conductivity, XvdW, as 

KvdW 

R7 o 

6 
- 1 / Y + ~  ( b 2 n )  (7 + 1 .01(bEn)2  w y ,  (7)  

and to the self-diffusion coefficient, Dvdw, as 

Dvdw 
Do 

- 1 / Y +  0.400 -1 (b2n)2 w r, (8) 

where r/o, ro and Do are the Chapman-Enskog expressions for viscosity, 
thermal conductivity, and self-diffusion, respectively. 

Table 1 lists the viscosity for selected values of density and tem- 
perature and explicitly demonstrates that the CBA van der Waals transport 
properties differ significantly from relevant MD HS values. For example, at 
a temperature just below the critical temperature (T=0.17, T / T c = 0 . 9 4 )  

and at near liquid densities (mr3=0.7071), the CBA van der Waals 
viscosity, r/vaw, is over an order of magnitude smaller than the HS 
viscosity, r/Hs. This discrepancy can be turned into great advantage when 
one wants to study high Reynolds number flows by a numerically stable 
algorithm which has as low a fluid viscosity as possible. As can be seen 
from Eq. (6), however, the viscosity cannot be much lower than that 

Table 1. Viscosity for Various Densities and Temperatures a 

T na 3 0.0141 0.0707 0.2828 0.4714 0.7071 0.7857 0.8839 0.9428 

0.17 

1.00 

O0 

r/as 0.075 0.077 0.113 0.211 0.565 0.782 1.558 3.029 
r/vdW/r/HS 0.915 0.772 0.568 0.219 0.092 0.186 0.286 0.261 
d,,aw/O" - 1.757 - 1.555 -0 .842 -0.365 0.142 0.281 0.435 0.516 
R,t/tr 6.944 2.221 0.791 0.745 0.695 0.638 0.664 0.817 
r/as 0.182 0.187 0.273 0.512 1.371 1.898 3.778 7.346 

q~aw/r/ns 0.963 0.930 0.897 1.044 1.274 1.374 1.136 0.789 
d,,aw/a 0.531 0.566 0.682 0.768 0.854 0.878 0.904 0.918 
R,7/a 4.550 1.227 0.386 0 0 0 0 0.437 

r/E/r/as 0.990 1.000 1.010 0.980 0.909 0.909 0.694 0.463 
r/,,aw/r/ns 0.975 1.004 1.292 1.571 1.706 1.758 1.381 0.933 
d,,aw/~ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
R,t/tr 3.746 0 0 0 0 0 0 0.247 

a r/Hs is from MD HS simulations [ 12 ]; r/~ is from Enskog theory; r/vaW is the van der Waals 
CBA viscosity without a random displacement. With the random displacement, the viscosity 
equals r/m when R,>O and r/vaw when R,7=O. For all tables, k = m = a =  1. Critical 
temperature To=0.180; at T=0.17 the Maxwell tie-line extends between n=0.1217 and 
n = 0.4089. 
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corresponding to the first (the kinetic) term, when dvaw is close to zero, as 
is the case in a normal liquid. 

If one wants to recover the HS transport properties, an additional 
displacement of the particles needs to be introduced. This new displace- 
ment is not deterministic but random so that its contribution to the 
average virial is zero and hence the EOS is not modified. The random dis- 
placement,/~ = R~, where t~ is a random unit vector uniformly distributed 
over the unit sphere, leads to a particle being displaced by dvdw +/~ and its 
collision partner by - d v a w - / ~  so that momentum and energy are exactly 
conserved. The shear viscosity is then r/*aw = r/vdW + r/R where, 

r/R _ 32 (b2n)2 y, (9) 
r/o 5zr 

Similarly, the thermal conductivity has the added contribution, 

xR_  64 (b2n)2 y, (10) 
Xo 25n 

and the self-diffusion coefficient, 

D R _ 2  (b2n)2 y. (11) 
D O zr 

The value of R selected at any density and temperature is such that 
one of the transport coefficients will match that of the corresponding HS 
value. With only one adjustable parameter, only one transport coefficient 
can be made to match at a time, so that, to calculate a nonequilibrium 
flow, for example, the transport property of interest to match would be the 
viscosity. Table 1 lists the values of R,,  the random displacement that will 
increase the CBA van der Waals viscosity to match the HS MD viscosity. 
Note that the random displacement can only increase the transport coef- 
ficients and since at high temperatures ( T =  1) the viscosity at intermediate 
and high densities is already larger than the HS viscosity, R, is set to zero 
so as to get the best agreement possible with HS MD. Similarly, for the 
hard sphere case (T = ~ )  a random displacement can be added to improve 
the agreement with HS MD, however, except at the lowest and highest 
densities, r/CBA is already too large so improvement can only be made at 
those extreme densities. Nevertheless, at the highest density (na3= 0.9428), 
corresponding to the normal liquid density, the improvement over the 
Enskog model could be of practical significance. 

Table 2 lists the self-diffusion coefficient when the random displace- 
ment is selected to match viscosity. In the cases where Dvdw is close to DHS 
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Table 2. Self-Diffusion Coefficient for Various Densities and 
Temperatures a 

T no" 3 0.0141 0.0707 0.2828 0.4714 0.7071 0.7857 0.8839 0.9428 

0.17 DHs 6.177 1.163 0.247 0.121 0.048 0.032 0.017 0.010 
Dvaw/Drts 0.999 0.991 0 .908 0 .810 0.847 1.260 3.529 8.623 

, Dvaw/Dxs 1.027 1.071 1.170 1.895 6.522 10.650 31.007 96.610 
RD/tr 1.181 0.734 0.461 0 .308 0.113 0 0 0 

1.00 Dns 14.981 2.821 0 .599 0.293 0.116 0.079 0 .042 0.025 
D,,aw/Dns 0.999 0.984 0.888 0.988 2.515 4.454 11.349 23.796 

, Dvaw/DHs 1.011 1.099 0.950 0.988 2.515 4.454 11.349 48.897 
RD/a 1.398 0.979 0.511 0.062 0 0 0 0 

oo DE/DHs 0.999 0.983 0.849 0.758 0.800 0.894 1.178 1.605 
Dvaw/DHs 0.999 0.986 0.933 1.148 3.150 5.514 13.627 27.796 

, Dvaw/Drts 1.007 0.986 0.933 1.148 3.150 5.514 13.627 35.965 
RD/a 1.346 0.907 0.393 0 0 0 0 0 

i I I I  i I 

a D H  s is from MD HS simulations [ 13]; D~ is from Enskog theory; Draw is the van der 
Waals CBA self-diffusion without a random displacement; and D*aw is the van der Waals 
CBA self-diffusion with a random displacement to best match viscosity, R, (see Table 1). 
With random displacement RD, the self-diffusion equals DHS if RD>O and Dvaw if RD=O. 

this random displacement generally overcorrects. However, for low to 
moderate densities, where Dvdw < D H s ,  a different random displacement, 
RD, can be made that matches the self-diffusion coefficient instead of the 
viscosity (see Table 2). 

An added benefit of using a random displacement in the van der 
Waals model is that it avoids anomalous correlations which lead to inac- 
curate results for the pressure when dvdw is small if local (in space and 
time) average values of density and temperature are used. With the random 
displacement, the unphysical correlations are eliminated, as demonstrated 
in the simulation results presented in ref. 8. 

In conclusion, the original D S M C  algorithm was designed to model a 
dilute gas. A deterministic CBA displacement allows the simulation to have 
a non-ideal gas equation of state, and adding a random displacement 
allows one to adjust the transport  properties independently of the EOS. 
This paper presents results using the van der Waals EOS, the only EOS 
that can be justifiably modeled at high densities given that h a r d  sphere 
collision rates and probability distributions are used in selecting and 
evaluating collisions. The generalization of CBA to arbitrary interaction 
potentials is possible at low density, but rigorous extensions to high density 
presents formidable problems. 
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